ModelHub Documentation

Comprehensive guides and API references for developers building with AI models

Overview

Why ModelHub?

ModelHub provides a unified platform to discover, evaluate, and deploy machine learning models. Our documentation helps you integrate AI solutions seamlessly into your workflow.

1. Install SDK

npm install @modelhub/ai
              

2. Initialize Client

const client = new ModelHubClient({
  apiKey: 'YOUR_API_KEY'
});
              

Getting Started

Step-by-Step Guide

  1. 1

    Create an Account

    Sign up at ModelHub Register to get your API key.

  2. 2

    Install SDK

    npm install @modelhub/ai
                    
  3. 3

    Initialize Client

    const client = new ModelHubClient({
      apiKey: 'your_api_key_here'
    });
                    
  4. 4

    Use Pre-trained Models

    // Available models
    const models = await client.listAvailableModels();
    
    // Load model
    const model = await client.loadModel(models[0].id);
    
    // Inference
    const result = await model.predict(inputTensor);
                    

API Documentation

Get Models

Retrieve a list of available AI models in the ModelHub database.

GET /api/models
Query Parameters:
category (string, optional)
sort (string, default: relevance)
Response:
{ models: [Model[]], total: number }

Train Model

Submit data and configuration to start a model training job in the cloud.

POST /api/training/jobs
Body:
"datasetId"
(required)
"modelConfig"
(required, JSON)
"computeClass"
(optional, default: standard)
Response:
{ jobId: string, status: string, created: ISO8601 }

Authentication

All API requests must include an Authorization: Bearer header with a valid API token.

Example Request

curl "https://api.modelhub.ai/models" \
  -H "Authorization: Bearer YOUR_API_KEY"
Replace YOUR_API_KEY with your actual API token from your account dashboard

Where to Find Your API Key

  1. 1
    Login to your account at ModelHub
  2. 2
    Navigate to the API Keys section
  3. 3
    Copy your token to clipboard and use in API requests

Best Practices

Model Lifecycle Management

  • • Use version tags for model deployments
  • • Monitor model performance in production
  • • Implement rollback strategies
  • • Schedule regular evaluation cycles

Performance Optimization

Model Serving

  • • Use batch inference when applicable
  • • Optimize input preprocessing pipelines
  • • Monitor GPU utilization metrics

Training

  • • Enable gradient checkpointing
  • • Monitor validation metrics closely
  • • Use learning rate schedules