AI Code

Hands-on implementations for neural networks, natural language processing, and machine learning algorithms using TensorFlow, PyTorch, and Scikit-learn.

Neural Network Implementation

This example demonstrates a simple neural network using TensorFlow to classify MNIST digits.

tensorflow.js

import tensorflow as tf
from tensorflow.keras.datasets import mnist

# Load and normalize data
(images, labels), (test_images, test_labels) = mnist.load_data()
images = images / 255.0

# Build sequential model
model = tf.keras.models.Sequential([
    tf.keras.layers.Flatten(input_shape=(28, 28)),
    tf.keras.layers.Dense(128, activation='relu'),
    tf.keras.layers.Dense(10, activation='softmax')
])

# Compile model
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

# Train
model.fit(images, labels, epochs=5, batch_size=32)

# Evaluate
test_loss, test_acc = model.evaluate(test_images, test_labels)
print(f"Accuracy: {test_acc:.4f}")

Network Architecture

This simple network contains 784 input units (28x28 pixels), 128 hidden units, and 10 output units (digit classes). The ReLU activation introduces nonlinearity between the layers.

  • Input Layer: 784 Neurons
  • Hidden Layer: 128 Neurons (ReLU)
  • Output Layer: 10 Neurons (Softmax)
Input
128 Neurons Layer
Output

Advanced Implementations

Explore more complex implementations in natural language processing, reinforcement learning, and computer vision.

GPT Mini

Lightweight transformer-based model for text generation and language understanding.

View Implementation
🤖

Reinforcement Learning

Q-learning implementation for solving grid-world challenges using policy gradients.

Explore Agent Code

Ready to Code?

Clone the repository, install dependencies, and modify these examples to suit your specific use case.

```