Getting Started
Install tools and create your first AI-Wasm project
1. Install Rust with Wasm Target
$ rustup target add wasm32-unknown-unknown $ cargo install wasm-bindgen-cli $ cargo add wasm-bindgen
2. Create a New Project
$ cargo new --lib wasm-ai-tutorial $ cd wasm-ai-tutorial $ cargo add ndarray wasm-bindgen
Advanced Techniques
WebAssembly SIMD
Accelerate tensor operations using WebAssembly's vector instructions:
#[wasm_bindgen]
pub fn vector_add(a: &[f32], b: &[f32]) -> Vec {
// SIMD-optimized implementation
// Uses v128 registers for 4-wide operations
let mut result = vec![0.0; a.len()];
for i in (0..a.len()).step_by(4) {
// Simulated SIMD operation
let chunk = a[i..i+4].iter().zip(&b[i..i+4])
.map(|(x, y)| x + y)
.collect::>();
result[i..i+4].copy_from_slice(&chunk);
}
result
}
Memory Optimization
Efficient memory management techniques for AI workloads:
-
Use
Memory
imports/exports for buffer sharing - Align data to 16-byte boundaries for SIMD
-
Use
post_message
for JS-WASM communication
Integration Examples
Integrate WebAssembly AI with your applications
JavaScript Integration
const importObject = {
env: {
memory: new WebAssembly.Memory({initial: 256})
}
};
WebAssembly.instantiateStreaming(fetch('ai-model.wasm'), importObject)
.then(obj => {
const result = obj.instance.exports.predict(input);
console.log('AI Prediction:', result);
});
Rust Build Script
[package]
name = "ai-model"
version = "0.1.0"
edition = "2021"
[dependencies]
wasm-bindgen = "0.2.83"
ndarray = "0.15.3"
[lib]
crate-type = ["cdylib"]
Use wasm-pack
for building and publishing
Resources
Rust for AI
Learn how to write AI models in Rust and compile to WebAssembly.
wasm-bindgen
Official documentation for Rust/WebAssembly integration tools.
WASM SIMD Guide
Advanced tutorial on vector operations for performance optimization.