Create blazing-fast AI visualizations using WebGPU and WebAssembly. Learn advanced rendering techniques and optimization strategies for modern browsers.
Jump to TutorialWebGPU is the next-generation graphics and compute API for the web, providing a low-level interface that dramatically outperforms WebGL 2.0. In this tutorial you'll build a complete WebGPU-based visualization that interacts with your WebAssembly AI models in real-time.
Requirements: This tutorial assumes you've completed our Core Concepts tutorial series.
← Check Core Concepts
// Initialize WebGPU
if (!navigator.gpu) {
alert("WebGPU not supported in your browser!");
}
async function init() {
const adapter = await navigator.gpu.requestAdapter();
const device = await adapter.requestDevice();
// Create canvas and context
const canvas = document.getElementById('visualization');
const context = canvas.getContext('webgpu');
// Configure render pipeline
const pipeline = device.createRenderPipeline({
// Your pipeline configuration goes here
});
}
canvas.getContext('webgpu')
is crucial for setting up the rendering context.
A powerful WebGPU feature is its flexible pipeline state setup. This includes vertex and fragment shaders written in WGSL (WebGPU Shading Language).
const pipeline = device.createRenderPipeline({
layout: 'auto',
vertex: {
module: device.createShaderModule({
code: wgslCode Vertex Shader
}),
entryPoint: 'main',
buffers: [...]
},
fragment: {
module: device.createShaderModule({
code: wgslCode Fragment Shader
}),
entryPoint: 'main',
targets: [...]
},
primitive: {
topology: 'triangle-list',
},
depthStencil: {
format: 'depth24plus',
depthCompare: 'less',
write: true
}
});
WebGPU requires explicit memory management for buffers. This becomes especially important when working with complex AI data visualizations where you might be rendering thousands of elements.
// Create vertex buffer
const vertexBuffer = device.createBuffer({
size: vertexData.byteLength,
usage: GPUBufferUsage.VERTEX | GPUBufferUsage.COPY_DST
});
device.queue.writeBuffer(vertexBuffer, 0, vertexData);
// Create index buffer
const indexBuffer = device.createBuffer({
size: indexData.byteLength,
usage: GPUBufferUsage.INDEX | GPUBufferUsage.COPY_DST
});
device.queue.writeBuffer(indexBuffer, 0, indexData);
GPUCompilationMessages
to catch shader compile errorsWith this you've created a powerful WebGPU-based visualization that can render complex AI model data efficiently in the browser. This foundation is perfect for creating interactive, high-performance visualizations for: