Master Number Theory Fundamentals
Explore the building blocks of mathematics from a developer's perspective. Learn how these concepts power modern cryptography, algorithms, and data structures.
Key Concepts
Prime Numbers
Números primos são números naturais maiores que 1 que têm divisores exclusivamente 1 e ele mesmo. Eles são as partes essenciais da teoria dos números.
Divisibility
Entender divisibilidade nos permite determinar se um número é divisível por outro, formando a base para algoritmos de otimização em ciência da computação.
Prime Factorization Demo
Input Number:
Examples:
- 24 ➝ 2×2×2×3
- 884 ➝ 2×2×13×17
- 1111 ➝ 11×101
Resultado aparecerá aqui (ex: 48 = 2 × 2 × 2 × 2 × 3)
Foundational Concepts
The following sections cover the fundamental mathematical principles that all developers should understand for algorithm design and system optimization.
Greatest Common Divisor (GCD)
The Largest number that divides both numbers without remainder
JavaScript Implementation
function gcd(a, b) {
return b === 0 ? a : gcd(b, a % b);
}
// Example usage:
let result = gcd(48, 18); // Returns 6
Mathematical Representation
GCD(a, b) = max{d ∈ ℕ | d|a ∧ d|b}
Where "d|a" means d divides a without remainder
Modular Arithmetic
Essencial para criptografia e programação com números grandes.
Current value: ...
Modulo base: 12
Try It Out!
Practice Problems
Test your understanding with these interactive challenges. Solutions are provided with step-by-step explanations.
Problem 1: Prime Identification
Determine whether the following numbers are prime or composite. Show your work using trial division method.
Number: 127
Trial Divisors: 2, 3, 5, 7, 11 (square root ≈11)
✔ 127 é primo (not divisible by any test divisors)
Problem 2: GCD & LCM
Compute GCD and LCM for 432 and 528 using prime factorization method.
Prime Factors:
- 432 = 2⁴ × 3³
- 528 = 2⁴ × 3 × 11
Results:
- GCD: 2⁴ × 3 = 48
- LCM: 2⁴ × 3³ × 11 = 4,752