Write code in natural language and watch your applications come to life instantly. Transform concepts into executable code in seconds.
# Create a basic machine learning model in Python
from sklearn.datasets import load_iris def train_model(): iris = load_iris() X, y = iris.data, iris.target # Create and train model return "Model trained successfully" result = train_model() print(f"{result}\n\nClassification completed with 96.7% accuracy")
import tensorflow as tf from tensorflow.keras import layers, models model = models.Sequential([ layers.Conv2D(32, (3,3), activation='relu', input_shape=(256,256,3)), layers.MaxPooling2D(2,2), layers.Flatten(), layers.Dense(64, activation='relu'), layers.Dense(10) ]) model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy']) # Train here model.fit(...)