Lambda Calculus Tutorials

Advanced Tiling Patterns with Lambda Calculus

Master recursive tiling algorithms and visual transformations using pure lambda functions.

Fractal Tiling withSKI Combinators

Use SKI combinators to generate infinite tiling patterns. This section demonstrates how to define recursive tiling structures using minimal reduction rules.

tile = S (K (S I)) 
       $ K (K $ S (λx.λy.(x y y)) 
                     (λa.λb.λc.(b (c a a) b)))

transform = λt.let (x, y) = t in
                       (x + (sin y) * 2.0, 
                        y + (cos x) * 2.0)

Interactive Tiling Simulator

Tiling Transformation Matrix

Represent spatial transformations using λ-calculus closures. This approach allows composing complex patterns by function composition.

Transformation equation visualization placeholder

λa.λb.λf.f (a b)

Pattern Composition

Compose multiple tiling patterns using higher-order functions. This section demonstrates pattern blending and conflict resolution.

Input A
Input B
Output Pattern