Fractal Tiling withSKI Combinators
Use SKI combinators to generate infinite tiling patterns. This section demonstrates how to define recursive tiling structures using minimal reduction rules.
tile = S (K (S I))
$ K (K $ S (λx.λy.(x y y))
(λa.λb.λc.(b (c a a) b)))
transform = λt.let (x, y) = t in
(x + (sin y) * 2.0,
y + (cos x) * 2.0)
Interactive Tiling Simulator
Tiling Transformation Matrix
Represent spatial transformations using λ-calculus closures. This approach allows composing complex patterns by function composition.
Transformation equation visualization placeholder
λa.λb.λf.f (a b)
Pattern Composition
Compose multiple tiling patterns using higher-order functions. This section demonstrates pattern blending and conflict resolution.
Input A
Input B
Output Pattern