Installation Guide

Set up your AI development environment efficiently

Development Environment Setup

Complete instructions for installing core tools, dependencies, and infrastructure requirements for AI development

Local Setup

  • • Python 3.10+ installation
  • • PyTorch/TensorFlow dependency management
  • • Jupyter environment configuration
Start Setup →

Cloud Configuration

  • • AWS/GCP instance provisioning
  • • GPU resource allocation
  • • Remote SSH access setup
Configure Cloud →

Local Development Setup

Install Python

Install the latest Anaconda distribution or native Python 3.10

Python 3.10.13 64-bit

PyPI Package Support

Installation Steps

  1. Download from official repository
  2. Verify GPG signature
  3. Install with full development headers

Python Installation Verification

python --version # Should output Python 3.10.0 or higher

Setup Virtual Environment

Create isolated development environments for dependency management

venv
Conda
pipenv

Basic Environment

python -m venv ai-env source ai-env/bin/activate pip install numpy pandas

GPU Support Verification

nvidia-smi # Confirm CUDA driver version

Cloud Resource Configuration

Provision Cloud Instance

Recommended Configuration

  • • 16GB RAM minimum
  • • NVIDIA A100 GPU or equivalent
  • • Ubuntu 22.04 LTS

AWS EC2 Setup

aws ec2 run-instances \ --image-id ami-0c9a428b8d8988c4f \ --instance-type p3.2x

SSH Connection

ssh -i "my-key.pem" ubuntu@[ip]
Note: Add key to AWS security group for remote access

Essential Development Tools

Jupyter Lab

Interactive development environment for notebooks and data exploration

Configuration Guide →

Docker

Containerize your development and production environments

Setup Instructions →

PyTorch

Installation instructions for GPU accelerated machine learning

Install with CUDA →