๐Ÿง  NeuroForge Documentation

Complete technical reference for the next-generation AI/ML framework with quantum integration.

๐Ÿ›  Installation

NeuroForge is available via standard package managers and supports Python 3.9+. The framework includes GPU support through CUDA/OpenCL and quantum integration via Qiskit.

PIP Install

pip install neuroforge

For CUDA enabled systems. Automatically downloads cuDNN binaries.

Build from Source


git clone https://github.com/neuroforge/core.git
cd core
python setup.py install

Requires Python 3.9+, CUDA Toolkit, and CMake.

NeuroForge Architecture
Documentation Version: 1.2.5 (2025-10-04)

๐Ÿš€ Quick Start

Minimal Model

import neuroforge as nf

# Create a simple neural network
model = nf.Sequential([
    nf.Linear(128, 256),
    nf.Activation('GELU'),
    nf.Dropout(0.2),
    nf.QuantumLayer(256, 128),  # Quantum-integrated layer
    nf.Dense(128, 10)
])

# Compile with optimizer
model.compile(optimizer='qadam', loss='crossentropy')

# Dummy data
X = nf.random.normal(size=(1000, 128))
y = nf.random.integers(0, 9, size=(1000,))

# Train for 5 epochs
history = model.fit(X, y, epochs=5, batch_size=32)

This example demonstrates a basic hybrid-classical/quantum neural network using NeuroForge's API. The framework automatically handles GPU acceleration and quantum compilation when available.

โšก

Dynamic Training

Support for real-time model modification during training with automatic gradient tracking.

๐Ÿค–

Quantum Integration

Hybrid quantum-classical layers with built-in quantum circuit compilation.

๐ŸŒ

Distributed Training

Out-of-the-box support for multi-GPU and TPU distributed training operations.

๐Ÿ” API Reference

Core Classes

  • neuroforge.Sequential - Linear stack of layers
  • neuroforge.Model - Base class for custom models
  • neuroforge.QLayer - Quantum computing integration
  • neuroforge.Optimizer - Optimization framework
  • neuroforge.Callback - Training life-cycle management

Key Methods

model.compile()
Configure training model architecture
model.fit()
Train model with given data
model.evaluate()
Evaluate model performance
model.quantum()
Enable quantum compilation
model.save()
Serialize model to file

๐Ÿงช Code Examples

Quantum Neural Network

qmodel = nf.QuantumModel(
    n_qubits=4,  # Required quantum resources
    backend='qiskit',  # Quantum execution framework
    layers=[
        nf.QuantumLayer(4, 8, 'ry'),