๐ง NeuroForge Documentation
Complete technical reference for the next-generation AI/ML framework with quantum integration.
๐ Installation
NeuroForge is available via standard package managers and supports Python 3.9+. The framework includes GPU support through CUDA/OpenCL and quantum integration via Qiskit.
PIP Install
pip install neuroforge
For CUDA enabled systems. Automatically downloads cuDNN binaries.
Build from Source
git clone https://github.com/neuroforge/core.git
cd core
python setup.py install
Requires Python 3.9+, CUDA Toolkit, and CMake.
๐ Quick Start
Minimal Model
import neuroforge as nf
# Create a simple neural network
model = nf.Sequential([
nf.Linear(128, 256),
nf.Activation('GELU'),
nf.Dropout(0.2),
nf.QuantumLayer(256, 128), # Quantum-integrated layer
nf.Dense(128, 10)
])
# Compile with optimizer
model.compile(optimizer='qadam', loss='crossentropy')
# Dummy data
X = nf.random.normal(size=(1000, 128))
y = nf.random.integers(0, 9, size=(1000,))
# Train for 5 epochs
history = model.fit(X, y, epochs=5, batch_size=32)
This example demonstrates a basic hybrid-classical/quantum neural network using NeuroForge's API. The framework automatically handles GPU acceleration and quantum compilation when available.
Dynamic Training
Support for real-time model modification during training with automatic gradient tracking.
Quantum Integration
Hybrid quantum-classical layers with built-in quantum circuit compilation.
Distributed Training
Out-of-the-box support for multi-GPU and TPU distributed training operations.
๐ API Reference
Core Classes
neuroforge.Sequential
- Linear stack of layersneuroforge.Model
- Base class for custom modelsneuroforge.QLayer
- Quantum computing integrationneuroforge.Optimizer
- Optimization frameworkneuroforge.Callback
- Training life-cycle management
Key Methods
model.compile()
model.fit()
model.evaluate()
model.quantum()
model.save()
๐งช Code Examples
Quantum Neural Network
qmodel = nf.QuantumModel(
n_qubits=4, # Required quantum resources
backend='qiskit', # Quantum execution framework
layers=[
nf.QuantumLayer(4, 8, 'ry'),