Realtime Data Streams
Build high-throughput, low-latency stream processing pipelines with advanced event pattern matching and backpressure management.
Core Concepts
Critical features of our stream processing architecture.
Backpressure Handling
Prevents system failures during sudden high-volume data surges with dynamic queue size adjustments.
Window Management
Optimized tumbling and sliding windows for time-based aggregations at scale.
Pattern Detection
Complex event pattern recognition with built-in stream filters for high signal-to-noise ratios.
Getting Started
1. Initialize Stream
Create a new stream processor with the eisen.stream()
API.
const pipeline = new eisen.Stream({ backpressure: 'dynamic', throughputLimit: 10000, windowSize: '5s', bufferCapacity: 100000 });
2. Connect Sources
Attach multiple real-time data sources using connectTo()
.
pipeline.connectTo([ { type: 'kafka', topic: 'iot-stream', consumers: 24, autoCommit: true }, { type: 'websocket', url: 'wss://data-feed.example.com' } ]);
Advanced Operations
Powerful tools for complex stream processing needs
Session Windows
Intelligent session management with automatic user behavior tracking for session-based analytics.
Stateful Processing
Maintain persistent state across stream elements for pattern continuation tracking.
Implementation
import { Stream } from 'eiseniiiaaaaiia/streams';
// Initialize stream processor
const pipeline = new Stream({
backpressure: 'elastic',
throughputCap: 18000,
checkpointInterval: '1s',
state: { max: 1000000 }
});
// Define processing logic
pipeline.on('event', (data) => {
if (data.type === 'click') {
pipeline.metrics.increment('user-interactions');
// Complex pattern matching
if (pipeline.pattern({
sequence: [
{ type: 'hover', within: '2s' },
{ type: 'click', within: '500ms' }
],
limit: 1
})) {
pipeline.alert('Potential fraud pattern detected');
}
}
});
// Register sinks
pipeline.sink('console');
pipeline.sink('prometheus', {
port: 9090
});
// Start processing
pipeline.start();