Neural Ethics

C++ Stable

Core Ethics Engine v3.1.2

High-performance ethical reasoning engine designed for AI decision-making systems with real-time bias tracking and moral constraint enforcement.

Input Pipeline

Accepts raw sensor data, decision parameters, and ethical constraints through standardized JSON/protobuf messaging.

Processing Modules

  • Real-time bias tracking with differential impact metrics
  • Constraint enforcement with symbolic logic rules
  • Causal chain explanation generator
  • Dynamic ethical scenario simulations

Decision Output

Returns probabilistic ethical scores with detailed justification trees for auditing and compliance.

θ
Ethical
Constraint
Enforcement
Moral Reasoning Kernel
Constraint Mapping
Validation Pipeline

Integration Guide

#include "ethical_engine.h"
#include "json_parser.h"

EthicsEngine engine(Config{
    bias_thres = 0.85,
    debug_level = 3,
    model_path = "/models/ethics_v3.onnx"
});

DecisionInput input;
input.sensor_data = load_json("scenario.json");
input.constraints = {
    {"privacy_preservation", "autonomy", "harm_minimization"},
    {"medical_treatment", "personal_data", "life_or_death"}
};

DecisionResult result = engine.evaluate(input);

if (result.trusted_score < 0.7) {
    std::cout << "Ethical threshold NOT met:\n";
    for (const auto& reason : result.violation_explanation) {
        std::cout << "  • " << reason << "\n";
    }
    engine.generate_report("scenario_report.txt");
}
140
Active checks
92%
Pass rate
47
Scenarios
3.2ms
Latency

Verified Integrations

RO

ROCm Ethical AI

  • GPU accelerated constraint evaluation
  • Integrated with PyTorch/ONNX
  • Quantum AI ethics validation
LG

Language Grid

  • Multilingual ethical filtering
  • Real-time linguistic ethics
  • Compliant LLM prompting
SD

SmartDecide

  • Autonomous decision logging
  • Regulatory compliance engine
  • Automated justification generation