Quantum Machine Learning Research
Exploring the intersection of quantum computing and machine learning through interactive experiments.
Quantum Circuit Sim (5 Qubits | GHZ State)
Visualize quantum circuits and machine learning model training in real-time simulation.
Key Concepts
- Quantum Neural Networks
- Quantum Feature Encoding
- Qubit Optimization
Current Projects
Quantum Pattern Recognition
Training quantum circuits for non-linear pattern recognition.
Quantum Entanglement Sim
Simulating entanglement-based machine learning models.
Variational Algorithms
Optimizing quantum gates for ML applications.
import qiskit from qiskit.visualization import plot_histogram from qiskit import QuantumCircuit, transpile, Aer, execute def quantum_model(data): qc = QuantumCircuit(4) for i in range(4): qc.h(i) qc.barrier() # Quantum feature encoding qc.rx(data[0], 0) qc.ry(data[1], 1) qc.rz(data[2], 2) qc.rz(data[3], 3) qc.barrier() # Entanglement for ML qc.h(2) qc.cx(0, 1) qc.cz(2, 3) return execute(qc, backend=Aer.get_backend('qasm_simulator'), shots=1024, optimization_level=3).result().get_counts()
Quantum ML Experiments
// Quantum machine learning model
const result = quantum_model(input_data)
plot_histogram(result)
Test quantum algorithms with real-world datasets and observe results.
Dive into the Quantum Future
Explore quantum's potential for machine learning and AI innovation!