Quantum Cryptography Fundamentals

Learn quantum key distribution protocols and implement BB84 in our interactive research sandbox environment.

๐Ÿ” Principles of Quantum Cryptography

Quantum cryptography leverages quantum mechanics to perform cryptographic tasks, enabling secure key exchange protocols like BB84 that are fundamentally secure against eavesdropping due to the no-cloning theorem.

// Quantum Key Distribution (BB84) - Core Concept
qubits โ† encode_bits_with_bases(secret, random_bases_Alice)
bases_Bob โ† measure_qubits_with_bases(random_bases_Bob)
shared_key โ† validate_bases_and_correct_errors(bases_Alice, bases_Bob)

Quantum Key Exchange Simulation

Alice's Qubit Preparation

Bits: 0101

Bases: +x

Sent Qubits: [|0โŸฉ, |1โŸฉ, |0โŸฉ, |1โŸฉ]

Bob's Measurement

Chosen Bases: x+

Raw Key: 0110

Final Shared Key:

๐Ÿ”’ Waiting for simulation...

๐ŸŽฏ BB84 Protocol

  • 1. Alice sends qubits with random bases
  • 2. Bob measures in random bases
  • 3. Basis comparison generates shared key
  • 4. Eavesdroppers disrupt the system

โš ๏ธ Security Features

  • Quantum No-Cloning Theorem
  • Eavesdropper detection through error rates
  • Information-theoretic security
  • Quantum entanglement applications

๐Ÿงช Practical Applications

  • Government secure communications
  • Banking transaction security
  • Quantum networks
  • Crypto-quantum hybrid systems

๐Ÿ”ฌ Quantum Research Sandbox

Experiment with real quantum cryptography implementations using our quantum simulator framework.

```