Getting Started
Welcome to our AI API documentation. Here you'll find comprehensive information to integrate our AI capabilities into your application efficiently. We use modern API practices with interactive elements to help you explore the features of our AI API.
/api/v1/ai/analyze
Analyze text, images, or data with our AI models.
Authentication
Use Bearer token authentication with the Authorization header. Obtain your API key from the dashboard.
Authorization: Bearer {api-key}
API keys expire after 24 hours. Use the token refresh endpoint to extend access.
Versioning
Current stable version: v1.2.0
Released June 2024
Recommended for production use with quarterly updates available via our dashboard.
New features in 1.2.0: Contextual embeddings for multilingual NLP, automatic bias detection, and model explainability reports.
AI Capabilities
Natural Language
Sentiment analysis, entity extraction, summarization, and conversation generation using transformer-based models.
- • Text classification
- • Multilingual support
- • Real-time inference
Computer Vision
Image recognition, object detection, and visual search using state-of-the-art convolutional neural networks.
- • OCR with layout analysis
- • Image captioning
- • Deepfake detection
Machine Learning
Custom model deployment, automated feature engineering, and real-time model monitoring for continuous improvement.
- • AutoML pipelines
- • Feature store
- • Model explainability
API Endpoints
/ai/analyze
Process text, images, or data inputs through the AI engine.
Request Body
{ "input": "Sample text for analysis", "model": "nlp-v2" }
/ai/models
List available AI models or retrieve model metadata.
Query Parameters
- model_type
- version
- provider
Code Examples
JavaScript
fetch('https://api.example.com/ai/analyze', {
method: 'POST',
headers: {
'Authorization': 'Bearer ' + apiKey,
'Content-Type': 'application/json'
},
body: JSON.stringify({
input: 'What is quantum computing?',
model: 'question-answer'
})
})
.then(response => response.json())
.then(data => console.log(data));
Python
import requests
response = requests.post(
'https://api.example.com/ai/analyze',
headers={
'Authorization': f'Bearer {api_key}',
'Content-Type': 'application/json'
},
json={"input": "Analyze this image", "model": "vision-v1"}
)
print(response.json())