Implement powerful image classification using AI Dino's state-of-the-art models
Install our core library to access image classification capabilities.
npm install @ai-dino/core
Use our pre-trained image classifier for fast results.
import { ImageClassifier } from '@ai-dino/core' const classifier = new ImageClassifier('resnet-200')
// Choose a pre-built model
const model = new ImageClassifier({
modelType: 'resnet-200',
numClasses: 1000,
pretrained: true
})
Available models: resnet-50, efficientnet-b3, vision-transformer, custom.
// Prepare dataset
const dataset = new ImageDataset('path/to/images', {
batch_size: 32
})
// Train model
await model.train(dataset, {
epochs: 20,
learning_rate: 0.001
})
Our system includes auto-hyperparameter optimization and data augmentation.
const results = classifier.predict([
'./test-image-1.jpg',
'./test-image-2.jpg'
])
console.log(results) // Returns top-5 predictions
Model returns confidence scores for each prediction category.
Ensure balanced class distribution and high-quality images (256x256+ resolution recommended)
Experiment with learning rates between 1e-4 and 1e-3 for optimal convergence
Monitor validation loss and accuracy metrics during training
Get expert guidance on optimizing your model architecture and training pipelines
Contact Expert