1. Project Setup
Initialize Project
Create a new project directory and install the necessary dependencies.
mkdir ezeni-dev && cd $_
npm init -y
npm install @ezeniia/sdk
Create Configuration
Configure the SDK with your API key and network settings.
// config.js
module.exports = {
apiKey: "YOUR_API_KEY",
network: "mainnet",
defaultNodes: ["node-01", "node-02"]
};
2. Core Implementation
Implement the AI Controller
Use the Ezeni Iia SDK to manage decentralized AI computations across the network.
const { AIController } = require('@ezeniai/sdk');
const controller = new AIController({
configPath: "./config.js",
autoSync: true,
modelType: "vision-transformer"
});
await controller.init(); // Load trained model weights
Initialization successful.
[info] Connected to 3 primary nodes.
[ready] Model "vision-transformer" loaded.
3. Performance Optimization
Distribute Computation
Assign tasks across multiple nodes to increase throughput using dynamic load balancing.
controller.distribute({
tasks: 500,
nodeBalance: true,
batch: "medium"
});
Model Training
Optimize for different AI models using custom training profiles.
controller.train({
profile: "high-performance-gpu",
maxIterations: 1000
});
Performance Monitoring
Real-time metrics to ensure optimal resource utilization across the network.
const stats = controller.getPerformance();
console.log(JSON.stringify(stats, null, 2));
4. Deployment
Model Deployment
Publish your model to the decentralized AI network for live execution.
Deployment Status: ✓ Node-01: Running 🟢 ✓ Node-03: Synced 🟢 ⚠️ Node-02: Low capacity 🟡
Ready to Build?
Start deploying AI applications today with the Ezeni iia decentralized infrastructure platform.
🛠 Developer Resources