1. Setting Up Your AI Project
Initialize Project
Create a new directory for your AI model and install the required dependencies using our decentralized SDK.
mkdir my-ai-model
cd my-ai-model
npm init -y
npm install @ezeniiaadeploy/sdk
Create Configuration
Configure your decentralized training settings with node selection and security parameters.
// config.json
{
"training": {
"epochs": 100,
"compute_nodes": ["node-01", "node-02"],
"security": {
"signature_key": "0x3E..."
}
},
"model": "ezeniia-ml-v2"
}
2. Implementing Your Training Script
Create Training Script
Use the Ezeni Iia SDK to distribute your training process across multiple nodes for faster execution.
import { TrainController } from '@ezeniia/sdks';
const controller = new TrainController({
config: 'config.json',
dataset: 's3://ezeniia/datasets/image-net',
modelType: 'vision-transformer'
});
await controller.start(); // Initializes parallel training
Training Progress: [node-01] ✓ Layer 1: 32% (6/18) [node-02] ▶ Layer 2: 18% (4/22) Total Sync Time: 02:35:17 Remaining: ~2 hrs 42 mins
3. Monitoring and Optimization
Training Dashboard
Access real-time metrics showing GPU utilization and validation accuracy across all nodes.
Parameter Tuning
Adjust hyperparameters like learning rate and batch size based on distributed performance metrics.
Node Performance
- • node-01: 92% efficient
- • node-02: ! Needs rebalancing
- • node-03: ✅ Optimal sync
4. Deployment and Iteration
Model Deployment
When your model reaches optimal performance, use the framework to deploy it across the decentralized network.
const deployer = new ModelDeployer({
modelPath: './trained_model',
nodes: ['node-01', 'node-03']
});
await deployer.push(); // Distributes model across 3+ nodes
Continuous Training
Configure auto-refresh settings to retrain your model as new data becomes available in the network.