ελββΩΩΑ Documentation

Comprehensive guide to the epsilon-beta-omega formal system and its implementations.

1. Core Concepts

🔍

Epsilon Verification

Epsilon normalization guarantees completeness in lambda-calculus expressions through type-theoretic validation. Ensures β-reductions maintain Ω-consistency.

Omega Normalization

Final form of expressions in Ω-closed systems. Enables distributed computation through canonical form preservation.

2. Syntax Reference

Basic Reductions


λx.ε(β(x)) 
→ ω-reduction:
→ Ω-normal form

Type Normalization


Ω: (λx:ε → β(x)) 
≡ ε: (λx:β) 
→ Ω-normalized

3. Implementation

Step-by-Step Setup

  1. Clone the repository: git clone https://github.com/ελββΩΩΑ
  2. Install dependencies: npm install epsilon-core omega-runtime
  3. Run verifier: ε-verify --input=λ-expression --output=Ω-form

4. API Reference

ε-Verify


POST /api/verify
{
  "expression": "λx.β(x)"
}

Returns Ω-normal form

β-Resolver


GET /api/resolve?term=λx.y

Returns reduction steps

5. Validation Methods

Completeness Check

Ensures all reductions terminate in finite steps using ordinal recursion limits.

Consistency Proof

Proves β-reduction paths remain within Ω-normal bounds.

Concurrency

Distributed verification across multiple ω-nodes.

6. Interactive Demo


λx.λy.ε(β(x) ⨁ β(y)) 
→ ω-reduction:
→ λx.λy.Ω(x) * Ω(y)

Apply epsilon verification to a beta-OR function

Run Interactive Example →
Ω-reduction: 73% complete