Λιβι.λ × Haskell

Bridging functional minds across languages

This tutorial explores how Haskell's pure functional paradigm aligns with λιβι.λ's λ-calculus foundations. You'll learn to:

  • → Convert Haskell lambdas to λιβι.λ syntax
  • → Implement currying patterns
  • → Create interactive λ-calc exercises in GHCi

Haskell's Λ Functions

Haskell

identity :: a -> a
identity = λx.x

add :: a -> a -> a
add = λx.λy.x

λιβι.λ Notation

(λx.x) -- Identity
(λx.λy.x) -- Add

GHCi tip: Use :{ for blocks

λ> :{

add = λx -> λy -> x

λ> :}

Convert & Reduce

Result will appear here...

Currying Deep Dive

Concept Haskell λιβι.λ
Church Numeral two = λf → λx → f (f x) (λf.λx.f(f x))
Partial Application succ two (λn.λf.λx.f(n f x)) two

Reduction Visualizer

(λx.x) (λy.y)
→
<--β-->
λy.y